Top ▲
GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.
Not curated in GtoImmuPdb
Target id: 585
Nomenclature: Nav1.8
Family: Voltage-gated sodium channels (NaV)
Annotation status:
Annotated and reviewed, awaiting update
» Email us
Gene and Protein Information ![]() |
|||||||
Species | TM | P Loops | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 24 | 1 | 1956 | 3p22.2 | SCN10A | sodium voltage-gated channel alpha subunit 10 | 41 |
Mouse | 24 | 1 | 1958 | 9 71.33 cM | Scn10a | sodium channel, voltage-gated, type X, alpha | |
Rat | 24 | 1 | 1956 | 8q32 | Scn10a | sodium voltage-gated channel alpha subunit 10 |
Database Links ![]() |
|
Alphafold | Q9Y5Y9 (Hs), Q6QIY3 (Mm), Q62968 (Rn) |
ChEMBL Target | CHEMBL5451 (Hs), CHEMBL5158 (Mm), CHEMBL4017 (Rn) |
DrugBank Target | Q9Y5Y9 (Hs) |
Ensembl Gene | ENSG00000185313 (Hs), ENSMUSG00000034533 (Mm), ENSRNOG00000032473 (Rn) |
Entrez Gene | 6336 (Hs), 20264 (Mm), 29571 (Rn) |
Human Protein Atlas | ENSG00000185313 (Hs) |
KEGG Gene | hsa:6336 (Hs), mmu:20264 (Mm), rno:29571 (Rn) |
OMIM | 604427 (Hs) |
Orphanet | ORPHA325976 (Hs) |
Pharos | Q9Y5Y9 (Hs) |
RefSeq Nucleotide | NM_006514 (Hs), NM_009134 (Mm), NM_017247 (Rn) |
RefSeq Protein | NP_006505 (Hs), NP_033160 (Mm), NP_058943 (Rn) |
UniProtKB | Q9Y5Y9 (Hs), Q6QIY3 (Mm), Q62968 (Rn) |
Wikipedia | SCN10A (Hs) |
Associated Proteins ![]() |
||||||||||||||||||||||
|
|
|
||||||||||||||||||||
Associated Protein Comments | ||||||||||||||||||||||
AnnexinI/p11 facilitates insertion of channels into the cell membrane [27] and CAP-1 regulates uptake from the cell membrane [24]. |
Functional Characteristics ![]() |
|
Activation V0.5 = -16 mV. Inactivation (6 ms) |
Ion Selectivity and Conductance Comments |
From the original measurements of the slow, TTX-resistant sodium current in dorsal root ganglion neurons (which we know now is due to Nav1.8), we can conclude that this channel is selective for Na over K and Ca (Na+ > K+>> Ca2+) like all other sodium channels. There are no comparable measurements on cloned channels that have been published. [16] “Selectivity measurements were made on Nav1.8 channels conducting the slow TTX-resistant sodium current of dorsal root ganglion neurons.” |
Voltage Dependence ![]() |
||||||||||||||||||||||
|
||||||||||||||||||||||
|
Download all structure-activity data for this target as a CSV file
Activators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific activator tables |
Inhibitors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Channel Blockers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
View species-specific channel blocker tables | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Channel Blocker Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lignocaine produces 41% block at 1mM [1]. |
Allosteric Modulators | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Tissue Distribution ![]() |
||||||||
|
||||||||
|
Functional Assays ![]() |
||||||||||
|
||||||||||
|
||||||||||
|
Physiological Functions ![]() |
||||||||
|
||||||||
|
Physiological Consequences of Altering Gene Expression ![]() |
||||||||||
|
||||||||||
|
Phenotypes, Alleles and Disease Models ![]() |
Mouse data from MGI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Clinically-Relevant Mutations and Pathophysiology ![]() |
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||
Clinically-Relevant Mutations and Pathophysiology Comments | ||||||||||||||||||||||||||||||||||
Rapid recovery from inactivation is conferred by a three amino acid insert in D IV S3-S4 [11]. In a rat model, the missense mutation at molecular location S356F was demonstrated to remove TTX resistance [37]. |
Gene Expression and Pathophysiology ![]() |
||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|
||||||||||||
|
1. Akopian AN, Sivilotti L, Wood JN. (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature, 379 (6562): 257-62. [PMID:8538791]
2. Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S et al.. (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci, 2 (6): 541-8. [PMID:10448219]
3. Arisawa T, Tahara T, Shiroeda H, Minato T, Matsue Y, Saito T, Fukuyama T, Otsuka T, Fukumura A, Nakamura M et al.. (2013) Genetic polymorphisms of SCN10A are associated with functional dyspepsia in Japanese subjects. J Gastroenterol, 48 (1): 73-80. [PMID:22618805]
4. Bagal SK, Kemp MI, Bungay PJ, Hay TL, Murata Y, Payne CE, Stevens EB, Brown A, Blakemore DC, Corbett MS et al.. (2016) Discovery and optimisation of potent and highly subtype selective Nav1.8 inhibitors with reduced cardiovascular liabilities. Med. Chem. Commun, 7: 1925-1931. DOI: 10.1039/C6MD00281A
5. Black JA, Dib-Hajj S, Baker D, Newcombe J, Cuzner ML, Waxman SG. (2000) Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc Natl Acad Sci USA, 97 (21): 11598-602. [PMID:11027357]
6. Blair NT, Bean BP. (2002) Roles of tetrodotoxin (TTX)-sensitive Na+ current, TTX-resistant Na+ current, and Ca2+ current in the action potentials of nociceptive sensory neurons. J Neurosci, 22 (23): 10277-90. [PMID:12451128]
7. Bosmans F, Maertens C, Verdonck F, Tytgat J. (2004) The poison Dart frog's batrachotoxin modulates Nav1.8. FEBS Lett, 577 (1-2): 245-8. [PMID:15527793]
8. Cardenas CG, Del Mar LP, Cooper BY, Scroggs RS. (1997) 5HT4 receptors couple positively to tetrodotoxin-insensitive sodium channels in a subpopulation of capsaicin-sensitive rat sensory neurons. J Neurosci, 17 (19): 7181-9. [PMID:9295364]
9. Cummins TR, Waxman SG. (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci, 17 (10): 3503-14. [PMID:9133375]
10. Dib-Hajj S, Black JA, Felts P, Waxman SG. (1996) Down-regulation of transcripts for Na channel alpha-SNS in spinal sensory neurons following axotomy. Proc Natl Acad Sci USA, 93 (25): 14950-4. [PMID:8962162]
11. Dib-Hajj SD, Ishikawa K, Cummins TR, Waxman SG. (1997) Insertion of a SNS-specific tetrapeptide in S3-S4 linker of D4 accelerates recovery from inactivation of skeletal muscle voltage-gated Na channel mu1 in HEK293 cells. FEBS Lett, 416 (1): 11-4. [PMID:9369222]
12. Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN. (2003) The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol (Lond.), 550 (Pt 3): 739-52. [PMID:12794175]
13. Durrant SJ. (2021) Substituted tetrahydrofurans as modulators of sodium channels. Patent number: WO2021113627A1. Assignee: Vertex Pharmaceuticals Incorporated. Priority date: 04/12/2020. Publication date: 10/06/2021.
14. Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T et al.. (2012) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci USA, 109 (47): 19444-9. [PMID:23115331]
15. Farrag KJ, Bhattacharjee A, Docherty RJ. (2008) A comparison of the effects of veratridine on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in isolated rat dorsal root ganglion neurons. Pflugers Arch, 455 (5): 929-38. [PMID:17962978]
16. Fedulova SA, Kostyuk PG, Veselovsky NS. (1991) Ionic mechanisms of electrical excitability in rat sensory neurons during postnatal ontogenesis. Neuroscience, 41 (1): 303-9. [PMID:1647504]
17. Ghovanloo MR, Tyagi S, Zhao P, Waxman SG. (2025) Nav1.8, an analgesic target for nonpsychotomimetic phytocannabinoids. Proc Natl Acad Sci U S A, 122 (4): e2416886122. [PMID:39835903]
18. Gilchrist JM, Yang ND, Jiang V, Moyer BD. (2024) Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel NaV1.8 with a Unique Mechanism of Action. Mol Pharmacol, 105 (3): 233-249. [PMID:38195157]
19. Gold MS, Levine JD, Correa AM. (1998) Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J Neurosci, 18 (24): 10345-55. [PMID:9852572]
20. How SW, Cheng AL. (1992) Present status of cancer treatment in Taiwan. Gan To Kagaku Ryoho, 19 (8 Suppl): 1136-8. [PMID:1514825]
21. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R et al.. (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci USA, 104 (20): 8520-5. [PMID:17483457]
22. Jo S, Fujita A, Osorno T, Stewart RG, Vaelli PM, Bean BP. (2025) Differential state-dependent Nav1.8 inhibition by suzetrigine, LTGO-33, and A-887826. J Gen Physiol, 157 (4). [PMID:40136042]
23. Kamei T, Kudo T, Yamane H, Ishibashi F, Takada Y, Honda S, Maezawa Y, Ikeda K, Oyamada Y. (2024) Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230. Biochem Biophys Res Commun, 721: 150126. [PMID:38776832]
24. Liu C, Cummins TR, Tyrrell L, Black JA, Waxman SG, Dib-Hajj SD. (2005) CAP-1A is a novel linker that binds clathrin and the voltage-gated sodium channel Na(v)1.8. Mol Cell Neurosci, 28 (4): 636-49. [PMID:15797711]
25. Mulcahy JV, Pajouhesh H, Beckley JT, Delwig A, Du Bois J, Hunter JC. (2019) Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform NaV1.7. J Med Chem, 62 (19): 8695-8710. [PMID:31012583]
26. Novakovic SD, Tzoumaka E, McGivern JG, Haraguchi M, Sangameswaran L, Gogas KR, Eglen RM, Hunter JC. (1998) Distribution of the tetrodotoxin-resistant sodium channel PN3 in rat sensory neurons in normal and neuropathic conditions. J Neurosci, 18 (6): 2174-87. [PMID:9482802]
27. Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, Wood JN. (2002) Annexin II light chain regulates sensory neuron-specific sodium channel expression. Nature, 417 (6889): 653-6. [PMID:12050667]
28. Osteen JD, Immani S, Tapley TL, Indersmitten T, Hurst NW, Healey T, Aertgeerts K, Negulescu PA, Lechner SM. (2025) Pharmacology and Mechanism of Action of Suzetrigine, a Potent and Selective NaV1.8 Pain Signal Inhibitor for the Treatment of Moderate to Severe Pain. Pain Ther, 14 (2): 655-674. [PMID:39775738]
29. Patel MV, Peltier HM, Matulenko MA, Koenig JR, C Scanio MJ, Gum RJ, El-Kouhen OF, Fricano MM, Lundgaard GL, Neelands T et al.. (2022) Discovery of (R)-(3-fluoropyrrolidin-1-yl)(6-((5-(trifluoromethyl)pyridin-2-yl)oxy)quinolin-2-yl)methanone (ABBV-318) and analogs as small molecule Nav1.7/ Nav1.8 blockers for the treatment of pain. Bioorg Med Chem, 63: 116743. [PMID:35436748]
30. Payne CE, Brown AR, Theile JW, Loucif AJ, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM et al.. (2015) A novel selective and orally bioavailable Nav 1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol, 172 (10): 2654-70. [PMID:25625641]
31. Renganathan M, Cummins TR, Waxman SG. (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol, 86 (2): 629-40. [PMID:11495938]
32. Renganathan M, Gelderblom M, Black JA, Waxman SG. (2003) Expression of Nav1.8 sodium channels perturbs the firing patterns of cerebellar Purkinje cells. Brain Res, 959 (2): 235-42. [PMID:12493611]
33. Saab CY, Craner MJ, Kataoka Y, Waxman SG. (2004) Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis. Exp Brain Res, 158 (1): 1-8. [PMID:15118796]
34. Saab CY, Cummins TR, Waxman SG. (2003) GTP gamma S increases Nav1.8 current in small-diameter dorsal root ganglia neurons. Exp Brain Res, 152 (4): 415-9. [PMID:12898089]
35. Sheets PL, Heers C, Stoehr T, Cummins TR. (2008) Differential block of sensory neuronal voltage-gated sodium channels by lacosamide [(2R)-2-(acetylamino)-N-benzyl-3-methoxypropanamide], lidocaine, and carbamazepine. J Pharmacol Exp Ther, 326 (1): 89-99. [PMID:18378801]
36. Shields SD, Ahn HS, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-Hajj SD. (2012) Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain, 153 (10): 2017-30. [PMID:22703890]
37. Sivilotti LG. (2010) What single-channel analysis tells us of the activation mechanism of ligand-gated channels: the case of the glycine receptor. J Physiol (Lond.), 588 (Pt 1): 45-58. [PMID:19770192]
38. Sleeper AA, Cummins TR, Dib-Hajj SD, Hormuzdiar W, Tyrrell L, Waxman SG, Black JA. (2000) Changes in expression of two tetrodotoxin-resistant sodium channels and their currents in dorsal root ganglion neurons after sciatic nerve injury but not rhizotomy. J Neurosci, 20 (19): 7279-89. [PMID:11007885]
39. Tanaka M, Cummins TR, Ishikawa K, Dib-Hajj SD, Black JA, Waxman SG. (1998) SNS Na+ channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. Neuroreport, 9 (6): 967-72. [PMID:9601651]
40. Vaelli P, Fujita A, Jo S, Zhang HB, Osorno T, Ma X, Bean BP. (2024) State-Dependent Inhibition of Nav1.8 Sodium Channels by VX-150 and VX-548. Mol Pharmacol, 106 (6): 298-308. [PMID:39322410]
41. Vijayaragavan K, Powell AJ, Kinghorn IJ, Chahine M. (2004) Role of auxiliary beta1-, beta2-, and beta3-subunits and their interaction with Na(v)1.8 voltage-gated sodium channel. Biochem Biophys Res Commun, 319 (2): 531-40. [PMID:15178439]
42. Wu B, Murray JK, Andrews KL, Sham K, Long J, Aral J, Ligutti J, Amagasu S, Liu D, Zou A et al.. (2018) Discovery of Tarantula Venom-Derived NaV1.7-Inhibitory JzTx-V Peptide 5-Br-Trp24 Analogue AM-6120 with Systemic Block of Histamine-Induced Pruritis. J Med Chem, 61 (21): 9500-9512. [PMID:30346167]
43. Yiangou Y, Birch R, Sangameswaran L, Eglen R, Anand P. (2000) SNS/PN3 and SNS2/NaN sodium channel-like immunoreactivity in human adult and neonate injured sensory nerves. FEBS Lett, 467 (2-3): 249-52. [PMID:10675548]
44. Zhang XF, Shieh CC, Chapman ML, Matulenko MA, Hakeem AH, Atkinson RN, Kort ME, Marron BE, Joshi S, Honore P et al.. (2010) A-887826 is a structurally novel, potent and voltage-dependent Na(v)1.8 sodium channel blocker that attenuates neuropathic tactile allodynia in rats. Neuropharmacology, 59 (3): 201-7. [PMID:20566409]