Top ▲
GtoPdb is requesting financial support from commercial users. Please see our sustainability page for more information.
Target has curated data in GtoImmuPdb
Target id: 327
Nomenclature: P2Y11 receptor
Family: P2Y receptors
Annotation status:
Annotated and reviewed, awaiting update
» Email us
Gene and Protein Information ![]() |
||||||
class A G protein-coupled receptor | ||||||
Species | TM | AA | Chromosomal Location | Gene Symbol | Gene Name | Reference |
Human | 7 | 374 | 19p13.2 | P2RY11 | purinergic receptor P2Y11 | 4 |
Previous and Unofficial Names ![]() |
purinergic receptor P2Y, G-protein coupled, 11 |
Database Links ![]() |
|
Specialist databases | |
GPCRdb | p2y11_human (Hs) |
Other databases | |
Alphafold | Q96G91 (Hs) |
ChEMBL Target | CHEMBL4867 (Hs) |
Ensembl Gene | ENSG00000244165 (Hs) |
Entrez Gene | 5032 (Hs) |
Human Protein Atlas | ENSG00000244165 (Hs) |
KEGG Gene | hsa:5032 (Hs) |
OMIM | 602697 (Hs) |
Orphanet | ORPHA371321 (Hs) |
Pharos | Q96G91 (Hs) |
RefSeq Nucleotide | NM_002566 (Hs) |
RefSeq Protein | NP_002557 (Hs) |
UniProtKB | Q96G91 (Hs) |
Wikipedia | P2RY11 (Hs) |
Natural/Endogenous Ligands ![]() |
ATP |
UTP |
Potency order of endogenous ligands (Human) |
ATP>ADP |
Download all structure-activity data for this target as a CSV file
Agonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Agonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reference [6] EC50 values are found using cAMP and/or IP3 functional assays. Reference [22] EC50 values are found using Ca2+ functional assays. In 1321N1 cells transfected with the human P2Y11, β-NAD+ and NAAD+ increase intracellular production of IP3 and cyclic AMP followed by elevation of Ca2+ in a concentration range of 1-100 μM [16-17]. Two new iso-lantherans have been isolated from a marine Australian sponge and represent a promising new structural type for the development of P2Y11 receptor agonists [8]. |
Antagonists | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Key to terms and symbols | View all chemical structures | Click column headers to sort | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Antagonist Comments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Reference [6] IC50 values are found using IP3 and/or cAMP functional assays. |
Immunopharmacology Comments |
The P2Y11 receptor has been identified as a molecular target for the development of anti-inflammatory/immunosuppressive therapeutics [9]. P2Y11 stimulation induces an anti-inflammatory effect in human dendritic cells [3]. |
Primary Transduction Mechanisms ![]() |
|
Transducer | Effector/Response |
Gq/G11 family | Phospholipase C stimulation |
References: 18 |
Secondary Transduction Mechanisms ![]() |
|
Transducer | Effector/Response |
Gs family | Adenylyl cyclase stimulation |
References: 6,18 |
Tissue Distribution ![]() |
||||||||
|
||||||||
|
||||||||
|
Functional Assays ![]() |
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
||||||||||
|
Physiological Functions ![]() |
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|
Clinically-Relevant Mutations and Pathophysiology ![]() |
||||||||||||||
|
Biologically Significant Variants ![]() |
||||||||||||
|
||||||||||||
|
General Comments |
A human P2Y11 receptor homology model with two templates, bovine-rhodopsin and hP2Y1-ATP complex model, has been computed. Computational modelling and mutational analysis have shed light on the structure and ligand binding site of the receptor [24]. Although no mouse and rat orthologs have been cloned, the existence of the murine P2Y11 receptor is supported by functional data obtained in mouse cardiomyocytes (see Tissue Function table, [2]). |
1. Amisten S, Melander O, Wihlborg AK, Berglund G, Erlinge D. (2007) Increased risk of acute myocardial infarction and elevated levels of C-reactive protein in carriers of the Thr-87 variant of the ATP receptor P2Y11. Eur Heart J, 28 (1): 13-8. [PMID:17135283]
2. Balogh J, Wihlborg AK, Isackson H, Joshi BV, Jacobson KA, Arner A, Erlinge D. (2005) Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J Mol Cell Cardiol, 39 (2): 223-30. [PMID:15893764]
3. Chadet S, Ivanes F, Benoist L, Salmon-Gandonnière C, Guibon R, Velge-Roussel F, Babuty D, Baron C, Roger S, Angoulvant D. (2015) Hypoxia/Reoxygenation Inhibits P2Y11 Receptor Expression and Its Immunosuppressive Activity in Human Dendritic Cells. J Immunol, 195 (2): 651-60. [PMID:26078273]
4. Communi D, Govaerts C, Parmentier M, Boeynaems JM. (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem, 272 (51): 31969-73. [PMID:9405388]
5. Communi D, Janssens R, Robaye B, Zeelis N, Boeynaems JM. (2000) Rapid up-regulation of P2Y messengers during granulocytic differentiation of HL-60 cells. FEBS Lett, 475 (1): 39-42. [PMID:10854854]
6. Communi D, Robaye B, Boeynaems JM. (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol, 128 (6): 1199-206. [PMID:10578132]
7. Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems JM. (2001) Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol Chem, 276 (19): 16561-6. [PMID:11278528]
8. Greve H, Meis S, Kassack MU, Kehraus S, Krick A, Wright AD, König GM. (2007) New iantherans from the marine sponge Ianthella quadrangulata: novel agonists of the P2Y(11) receptor. J Med Chem, 50 (23): 5600-7. [PMID:17941622]
9. Gruenbacher G, Gander H, Dobler G, Rahm A, Klaver D, Thurnher M. (2021) The human G protein-coupled ATP receptor P2Y11 is a target for anti-inflammatory strategies. Br J Pharmacol, 178 (7): 1541-1555. [PMID:33463722]
10. Jacobson KA, Jarvis MF, Williams M. (2002) Purine and pyrimidine (P2) receptors as drug targets. J Med Chem, 45 (19): 4057-93. [PMID:12213051]
11. Kornum BR, Kawashima M, Faraco J, Lin L, Rico TJ, Hesselson S, Axtell RC, Kuipers H, Weiner K, Hamacher A et al.. (2011) Common variants in P2RY11 are associated with narcolepsy. Nat Genet, 43 (1): 66-71. [PMID:21170044]
12. Magnone M, Basile G, Bruzzese D, Guida L, Signorello MG, Chothi MP, Bruzzone S, Millo E, Qi AD, Nicholas RA et al.. (2008) Adenylic dinucleotides produced by CD38 are negative endogenous modulators of platelet aggregation. J Biol Chem, 283 (36): 24460-8. [PMID:18606819]
13. Marteau F, Gonzalez NS, Communi D, Goldman M, Boeynaems JM, Communi D. (2005) Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood, 106 (12): 3860-6. [PMID:16118322]
14. Meis S, Hamacher A, Hongwiset D, Marzian C, Wiese M, Eckstein N, Royer HD, Communi D, Boeynaems JM, Hausmann R et al.. (2010) NF546 [4,4'-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha,alpha'-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monocyte-derived dendritic cells. J Pharmacol Exp Ther, 332 (1): 238-47. [PMID:19815812]
15. Moore DJ, Chambers JK, Wahlin JP, Tan KB, Moore GB, Jenkins O, Emson PC, Murdock PR. (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta, 1521 (1-3): 107-19. [PMID:11690642]
16. Moreschi I, Bruzzone S, Bodrato N, Usai C, Guida L, Nicholas RA, Kassack MU, Zocchi E, De Flora A. (2008) NAADP+ is an agonist of the human P2Y11 purinergic receptor. Cell Calcium, 43 (4): 344-55. [PMID:17707504]
17. Moreschi I, Bruzzone S, Nicholas RA, Fruscione F, Sturla L, Benvenuto F, Usai C, Meis S, Kassack MU, Zocchi E et al.. (2006) Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem, 281 (42): 31419-29. [PMID:16926152]
18. Qi AD, Kennedy C, Harden TK, Nicholas RA. (2001) Differential coupling of the human P2Y(11) receptor to phospholipase C and adenylyl cyclase. Br J Pharmacol, 132 (1): 318-26. [PMID:11156592]
19. Schnurr M, Toy T, Stoitzner P, Cameron P, Shin A, Beecroft T, Davis ID, Cebon J, Maraskovsky E. (2003) ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. Blood, 102 (2): 613-20. [PMID:12649135]
20. Ullmann H, Meis S, Hongwiset D, Marzian C, Wiese M, Nickel P, Communi D, Boeynaems JM, Wolf C, Hausmann R et al.. (2005) Synthesis and structure-activity relationships of suramin-derived P2Y11 receptor antagonists with nanomolar potency. J Med Chem, 48 (22): 7040-8. [PMID:16250663]
21. Vaughan KR, Stokes L, Prince LR, Marriott HM, Meis S, Kassack MU, Bingle CD, Sabroe I, Surprenant A, Whyte MK. (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol, 179 (12): 8544-53. [PMID:18056402]
22. White PJ, Webb TE, Boarder MR. (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol, 63 (6): 1356-63. [PMID:12761346]
23. Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Robaye B. (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol, 166 (12): 7172-7. [PMID:11390464]
24. Zylberg J, Ecke D, Fischer B, Reiser G. (2007) Structure and ligand-binding site characteristics of the human P2Y11 nucleotide receptor deduced from computational modelling and mutational analysis. Biochem J, 405 (2): 277-86. [PMID:17338680]
25. (2006) Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal, 2 (1): 1-324. [PMID:18404494]